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Outline

The goal of this document is to introduce and justify from a theoretical point of view,
the different statistical tools used at Kameleoon.

We start by presenting how Kameleoon assigns visitors to different variation within
an experiment which is the basis for what follow.

The second part is about Frequentist tests, which are run by default on our result
page. We first tackle the simple A/B test with only the original and one variation,
we explain the modelization, the hypothesis and how do we compute the reliability.
Then we extend those computations to A/B/C/n tests and explain how we compute our
confidence intervals. After that we explain how we chose to implement both CUPED
and our way to run sequential tests. To close this first part we present a few studies we
conducted regarding the impact of running visit-based tests and explain how we could
run a test on the ”all conversions” variable. Finally we give the formulas to compute
the minimal test duration for a given power.

In a third part we present our Bayesian A /B testing approach, how does it differs
from the frequentist one and how we compute the test statistics in this case.

Finally in a fourth and last part we outline the multi-armed bandit framework,
how it applies to A/B testing and give details regarding our own multi-armed bandit
implementation.
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1 Kameleoon’s assignation algorithm

To assign a visitor to an experiment variation, Kameleoon first build an identifier made
of the user visitor code which is a string identifying the visitor, the experiment ID and
a potential additional element in case of respooling. Then we use our own synchrone
implementation of the hash function SHA-256 [1] to compute a hash of this identifier.
The integer obtained through hashing is then mapped to a floating number between 0
and 1 in order to assign it to an experiment variation given the experiment assignation
setup. The SHA-256 function is deterministic, hence the same user (with the same
visitor code) will always be assigned to the same variation for a given experiment unless
we explicitly ask to recompute the assignation. This is also the case if you use one of
our SDK.

We implemented our own synchronous version of the SHA-256 function to be able to
run it inside any web browser or application and to be sure to compute the assignation
as efficiently as possible. SHA-256 is uniformly distributed which is a required property
in order to distribute visitors into variation as specified in the experiment setup.

For example, if we have an experiment which assigns 30% of its experimentee to the
original, 30% to the variation and 40% do not take part in the experiment at all. Then if
a user get an assignation value from our hash function of 0.33, first he will always get the
same value for that experiment unless an explicit respool is asked. Secondly, we assign
all users with identifier hashed between 0 and 0.3 (original deviation) to the original,
those between 0.3 and 0.6 (original deviation + variation deviation) to the variation and
those between 0.6 and 1 do not take part in the experiment. So this specific user which
maps to 0.33 will see the variation.
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2 Frequentist tests

2.1 Simple A/B test

A/B test is a simple controlled experiment, in which two versions of a single variable
are compared. Version A is the currently used version (the control), while version B is
modified in some respect (treatment). Every visitor, who is targeted by a test only sees
one version. For instance, version A might be the current checkout experience on a given
website and version B - a new checkout experience with a recommendation. Conversion
(success) in this case can be defined as a click on finalising the purchase. The goal of
the test is to discover which of the versions performs better.

A visitor can either convert a goal with probability p or not with probability ¢ = 1—p,
so conversions and converted visitors can be represented by Bernoulli distribution with
parameters p and q. Let n; be the number of visitors allocated to a version i, ¢; be
the number of visitors who converted a goal and were allocated to version i. As a sum
of independent Bernoulli trials, ¢4 and cp follow binomial distributions B(na,p4) and
B(np,pp). The conversion rate x; for a version i can be defined as:

&
xT; = n (2.1.1)

T4 is a current observed conversion rate for the control, g - current observed con-
version rate for the alternative. The null hypothesis is that there’s no difference between
the conversion rates of two versions. The alternative hypothesis is that the conversion
rate of version B is different than that of version A.

e Hy:xp=ux4

e Hy:axpF#xp

The test statistic T is the difference between two conversion rates x4 and zp. In
classical hypothesis testing, before the test we also select a probability threshold a, below
which the null hypothesis will be rejected. By convention, « is commonly set to 5%,
this means that five time out of a hundred there’s a risk of concluding that a difference
exists when there’s no actual difference between the conversion rates.

In the most of our applications, the sample size is large: common rule of thumb is to
check whether the sample size is bigger than 30. The observations are independent by
design. This is why according to the central limit theorem, the distribution of 7" under
Hj can be approximated by a normal distribution. The appropriate location test is called
a Z-test. To perform this test, we first calculate the population standard deviation o.

U:\/J:A(l—acA) +a:B(1—acB) (2.12)

na np

Since the sample size is large, we can perform a plug-in test by using the popu-
lation standard deviation o, instead of a sample standard deviation, to calculate the
standardised statistic Z [2].
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Z = (2.1.3)

To decide whether to reject the null hypothesis in favour of the alternative, we
calculate the p-value. p-value is the probability of obtaining test results at least as
extreme as the results actually observed, under the assumption that the null hypothesis
is correct. A very small p-value means that such an extreme observed outcome would
be very unlikely under the null hypothesis. Since the distribution of the test statistic is
symmetric around 0, the two-sided p-value is calculated as

p=2x(1—-®(Z)) = 1—erf(@) (2.1.4)
V2

where @ is the standard normal cumulative distribution function and erf is the error

function, an entire function defined by

orf(z) = \2/% /0 e (2.1.5)

The null hypothesis is rejected if the p-value is less than the chosen threshold a.
However, us not being the final decision maker, we prefer to show reliability instead of
the p-value and leave the client to decide whether the result of the test is sufficient to
conclude that there’s a significant difference between the versions.

reliability =1 —p (2.1.6)

2.2 A/B/C/n test

The procedure described in the previous section can be extended to test multiple versions
at the same time. For example, we could test four versions of a page and do an A/B/C/D
test, where A is the original version of a page and B, C, D are versions of the same page
each modified in its own respect. The purpose of such a test would be to discover which
of the modifications (B, C, D) will result in better performance compared to the original
A.

To perform this test, we will repeat the procedure described in the previous section
for the following three pairs of versions: A/B, A/C and A/D. Each such pair is treated
as a separate test: for each such pair we formulate a set of hypotheses Hy and H 4.

For i € {B,C, D}:

o Ho:JZZ‘:.ZCA
° HA:.TUi#iL'A

We will calculate the population standard deviation o;, the standardised statistic Z;,
the corresponding p-value and the reliability.
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o — \/xA(l —x4) N xi(1 — ;) (2.2.1)

na n;
Ty —TA
Z. - 2.2.2
- (2.2.2)
pi= 2% (1 (Z) = 1 — ers(1 2] (2.2.3)
V2
reliability; = 1 — p; (2.2.4)

Reliability; is shown next a conversion rate x; of every version i, i € {B,C, D}. This
procedure can be extended to any number of versions, not only four.

2.3 Multiple testing correction

When the number of variation increases, we increase the probability of obtaining a type
I error (false positive). Indeed, the more inference are made, the more likely it is that
one is erroneous. Several technics were developed to deal with this issue, we chose to
implement the Holm-Siddk method as it is more powerful than the Holm-Bonferroni
method. To apply this correction we correct the p-values using the following formula.
This formula is applied recursively to the multiples p-values sorted in ascending order.

i) = maz{pi—1), 1 — (1 = )™ "'}, where py = 1= (1 = p))™ (2.3.1)

Then the testing procedure can resume, and a hypothesis is rejected at level « if and
only if its adjusted p-value is less than «. This allow us to control the family wise error
rate at the given level a.

2.4 Confidence interval

The test can answer the question whether version B performs better than A, but it
doesn’t quantify how much better it performs or the level of uncertainty associated. To
quantify the performance of version B compared to version A, we introduce improve-
ment rate [3]:
IR="8 1 (2.4.1)
TA
To present the uncertainty associated with this parameter, confidence intervals are
shown. Confidence interval gives a range of values for improvement rate and has an
associated confidence level that gives the probability with which the estimated interval
will contain the true value of the parameter. The confidence level represents the the-
oretical long-run proportion of confidence intervals that contain the true value of the
improvement rate. By convention, we use a confidence level of 95%, which means that
95% of confidence intervals computed at this level contain the parameter.
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The confidence interval is given by

1 1 1 1 1 1 1 1
[IR—zla\/+——,IR+z1a\/+——] (2.4.2)
2V ca Co naA no 2V ca Co na no

where z;_, /5 is the (1 — a/2)-th quantile of a standard normal distribution. For the
chosen confidence level C' = 100(1 — )% = 95%, z1-¢ ~ 1.96.

Confidence interval is calculated for every pair i of (versionya, version;), i € {B,C...}
to show the uncertainty around improvement rate of every modified version with respect
to the original version.

2.5 CUPED

Controlled-experiment Using Pre-Experiment Data (CUPED) was first introduced in a
paper from Microsoft [4]. It is a variance reduction technique based on the control
variates method [5]. The idea is to leverage information about a known variable to
help reduce the error done when estimating an unknown one. We will quickly cover the
theory before detailing how we apply this technique at Kameleoon.

Let’s say our variable of interest is Y and we want to estimate E(Y) = u. The idea is
to introduce a new random variable X with known expectation E(X) in order to build

~

Yeontroo =Y + 0 * (X — E(X)) (251)

We can show that Ycomml is an unbiased estimator of y independently of the choice
of # because

N

E(Yeontrot) = E(Y) + 0 % (E(X) — E(E(X)) =E(Y) = p (2.5.2)

And that its variance is

Var(Yeoniro) = Var(Y +0x(X —E(X))) = Var(Y)+60*Var(X)+20xCov(Y, X) (2.5.3)

One can then show that this variance is minimal when 6 = —% and with this
0 we get
- Cov(Y,X)?
Var(Yeontrot) = Var(Y) — Cou(¥, X)* = (1 - p*)Var(X) (2.5.4)

Var(X)

Where p = Corr(Y, X) is the correlation between Y and X. Hence the greater this
coefficient is in absolute value, the more the final variance will be reduced.

So the difficulty lies in choosing the right control variate for which we know its
expectation, and which is highly correlated (positively or negatively) to the outcome.
And in a test framework, we have to know the expectation of the variable of interest
for the visitors within both the control and the variation group. This is where pre-
experiment data come in handy, because before the experiment start they are actually
equal (i.e. there is no difference between the groups prior to the start of the experiment).
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The natural choice for a variable correlated with the outcome variable, which will
be computed on pre-experiment data is actually the outcome variable itself. Empirical
results[4] have shown this to be the best choice for control variates. In this great paper
from Microsoft, researchers also warn about the following points:

e In general, the optimal pre-experiment window is 1-2 weeks. A shorter window
doesn’t capture enough variance and a longer window captures noise.

e For longer experiments, a longer pre-experiment window is needed to ensure that
the same users are observed both during and prior to the experiment.

e The covariate X has to be evenly distributed between treatment and control. If it
is impacted by the treatment, CUPED becomes invalid.

e The CUPED method only removes variance that can be accounted for linearly.

Having all that in mind we chose as covariate the same objective on a time window
of two weeks prior to start of the experiment. After using pre-experiment data to build
our new CUPED corrected metric, we run our statistical test on this new metric.

2.6 Sequential Testing

Sequential testing is a statistical approach used to monitor the progress of A/B tests
over time and make data-driven decisions on when to stop a test while keeping the risk
of a type I error under control. Sequential testing is the main answer to ”peeking” [6]
which is the most common source of unwanted risk inflation in AB testing.

Indeed the classical frequentist test is built on the assumption that the test is run
once we have collected all our samples and not before. But if we take a sneak peek at
results during the data collection phase and we stop the test if we find a reliable result,
then the resulting false positive rate is way higher than the one we expected.

Kameleoon has chosen to use a Gaussian mixture asymptotic confidence sequence
for its sequential tests, for a great review of the different framework of sequential tests
see this blog[7] made by Spotify. This sequence was proposed in Waudby-Smith et
al. (2023) [8]. It is based on always valid inference which was proposed by Howard
et al. (2021) [9], as stated in their paper, it provides a confidence sequence which has
the following properties all of those are very necessary to our field of work:

e The coverage guarantees holds for all sample sizes and even without distributional
assumption

e No previous knowledge of the stopping rule is required
e No bound on sample size

e The width of the confidence sequence converges towards zero
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Those properties make it perfect for our use case. Indeed the customer running its
AB test is able to choose to keep his experiment running to gather more data or to stop
it at any point in time according to any rule without inflating his risk. Of course there is
no free lunch, the resulting test will have less power than the corresponding fixed sample
test.

The sequential confidence interval for the improvement rate is given by

¢ (a/2)

With n being the total number of visitors targeted by the test, for example for an
AB test we have n = na + np. 6, the mean standard error after collecting n samples
and « a given level of significance, we use 5% by convention.

[IRi&n*\/qu;n*log( o +n 2] (2.6.1)

The trick of this method is that this sequence is obtained by injecting a mixing
distribution inside the Sequential Probability Ratio Test (SPRT) which was introduce
by Wald, A. (1945) [10]. In particular here we use a gaussian mixture but we have a lot
of liberty in the choice of the parameters of this distribution, this is what the parameter
¢ in the equation above is showing. Howard et al. (2021) includes in their article an
extensive discussion on the choice of this parameter which is very insightful (section
3.5). As they state it All uniform boundaries involve a tradeoff of tightness at different
intrinsic times: making a bound tighter for some range of times requires making it looser
at other times. They show that it is possible to optimize the interval boundaries so they
will be tightest for a given number of observation. They also show that this parameter
doesn’t need to be very precise as long as it is conservative. Indeed the price to pay is
way steeper in case of overestimation than under estimation.

We chose to optimize for the time nptimaq = 20000 as it is a number of visitors which
makes sense in our industry for our wide range of customers. In order to compute the
corresponding value of ¢ we use the following equality (corresponding to equation (21)
in [9]):

Noptimal W (_0472) 1 (2 6 2)
7(1) = —1 . .0.

W_1(z) being the lower branch of the Lambert W function. We can then use the

following inequality to approximate the Lambert function:

_ loglog(z)

o2 (o) (2.6.3)

log(z) — log(log(z)) < W(z) < log(x) — log(log(x)) — log(1

This allow us to express ¢ according to noptima; the number of observation for which
we optimize as follow:

Hoptimal | log(log(é)) — 2 xlog(a) (2.6.4)

¢
This yield a value of ¢ = 2520.
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2.7 Visit-based tests

The A/B tests discussed so far were performed on a visitor level. For those tests, the
two assumptions were satisfied by design:

e the observations are independent

e the samples are big enough (n; > 30)

Thus, the distribution of the test statistic 7' = x4 — xp under the null hypothesis is a
normal distribution according to the central limit theorem.

Visit-based tests violate the assumption of observations independence, since the same
visitor can return many times. To ensure that we can still use the same design for visit-
based tests, we compared the empirical CDF to the CDF of the normal distribution
and performed a Kolmogorov-Smirnov test. This non-parametric test (of equality of two
continuous one-dimensional probability distributions) is used to compare a sample with
a reference probability distribution. Our simulations showed that the empirical CDF
can be approximated by a normal distribution, thus z-test is appropriate to use.

2.8 All conversions tests

In the case of all conversions test, each visit v; is no longer a Bernoulli random variable,
rather it is a Multinoulli random variable with K outcomes, where K is the maximum
number of conversions per visit in the dataset, that is why a different procedure is to be
implemented for this type of tests. A Multinoulli random variable takes a value 1 if visit
has converted k times and 0 otherwise, the Multinoulli random vector z; has a length K
and zeroes in all positions except for the k-th. Each variation Vj of this test is a sum of
Multinoulli random variables, thus it follows a multinomial distribution. Variation can
be represented by a vector where for every position k, the vector contains the number
of visits converted exactly k times.

The test used to compare two multinomial distributions is a Pearson’s Chi-Squared
test. [11] To perform the test, each variation V; € {V4,Vg} is to be reshaped into a
vector v; = (vjo, ..., VjK ), where vy is the number of non-converted visits, v;; - number
of visits converted exactly 1 time, ..., vjx - number of visits converted exactly K times.
We'll call vectors v; vectors of frequencies.

To be able to conduct the test, zero values must be treated in the V4. For every
i €{0,..., K}, if v;4 = 0, it must be summed with the next element until it’s not zero.
If there’s a zero at the K-th position, it is to be summed with the value on the K-1-th
position. The corresponding elements of Vp vector should be summed too. Vectors of
frequencies v;-s all have the same dimensionality after this operation.

The test statistic x? can be computed the following way:

Z (vip — via)” (2.8.1)

=1

The parameter of a x? distribution is called the degrees of freedom df:
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df = dim, — 1 (2.8.2)

where dim, is the dimensionality of a vector of frequencies for any variation.
To obtain the p-value, we calculate the critical value for Chi-squared distribution
with df degrees of freedom for the test statistic. The reliability is

reliability =1 —p (2.8.3)

2.9 Minimal test duration to obtain significant result
e « (type I error): probability of rejecting a true null hypothesis
e [ (type II error): probability of not rejecting a false null hypothesis
e 1-a: desired reliability
e x(: current conversion rate
e [R: desired improvement rate
e vu: number of versions in the test minus one
e k;: ratio between traffic allocated to A and traffic allocated to the #-th version

® Ngaily: average number of daily visitors

For each pair i = 1..v of (versiona, version;), version;€{versionp, versiong, ...} the
following procedure is repeated: Since the conversion rate for a version is unknown
before the test, it can be estimated using the desired improvement rate:

z; =xa(1+IR) (2.9.1)

The sample size for version A (n4) and for the version i (n;) then can be approximated
by [12]:

(Za/Z + Z5)2
(i — za)?
where 2, /5 is the (1 — a/2)-th lower quantile of a standard normal distribution, zs
is the (1 — ) lower quantile of a standard normal distribution.
Required test duration in days for the pair (versionya, version;) is

[a(l —24)/k+ (1 — z;)] (2.9.3)

n; =

d; = (Mot ™y (2.9.4)

Ndaily

where [] denotes the ceiling operator. This operator maps x to the least integer greater
than or equal to x, ceil(x)=[z].
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The maximum of all d;-s is the duration (in days) of the test.

d = maz{dy,...,dy} (2.9.5)

During the test, the conversion rates z; for every version i are known, so the estima-
tion (1.6.1) should be omitted and observed z;-s should be plugged directly into equation

(1.6.3). We repeat the procedure described above to obtain d. The number of days left
to achieve a significant result is

diety = d — dpassed (296)
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3 Bayesian A/B Testing

3.1 Bayes probability

In the A/B testing framework, the goal of the Bayesian formulation is to calculate the
probability that the version A is different from the version B. By convention, if the
probability exceeds 95%, we can conclude that the result is statistically significant. This
is a necessary but not sufficient condition, the second condition will be described in the
next subsection.

e s4: number of visitors who converted a goal in the version A
e sp: number of visitors who converted a goal in the version B
e f4: number of visitors who didn’t convert in the version A
e fp: number of visitors who didn’t convert in the version B

The conversion rate is defined as:

54
Tp=—"+
sA+ fa
o (3.1.1)
rp=—"—
sp+ fB

The biggest distinction between the frequentist approach and the Bayesian one is
the concept of prior probability distribution. Prior is the probability distribution that
would express one’s beliefs about the parameter (the conversion rate in our case) before
new evidence is taken into account. We’ll model the conversion rate distribution using
Beta family of distributions as they provide a family of conjugate prior probability
distributions for binomial (hence Bernoulli) distributions.

zg~B(sa+1,fa+1)
TR NB(8A+1,fB+1)

Using the probability density function of the beta distribution and the Bayes’ the-
orem, we can get the total probability that xp is greater than x4 by integrating
the joint distribution over all values for which zp > x4 [13]. Let’s denote this posterior
probability as H(s4, fa,sB, fB)-

Lol 2% (1 —za) /2 232 (1 — 2p)/B
H(sa, fa,sB,fB) = Pr(zp > x4) :/0 / AB((SA fjg BB((SB ff;; drpdzr 4
! (3.1.2)
Or equivalently:
sa—1 .
B
Pr(zp >xa4) = Z (s4+1, fa+ fB) (3.1.3)

(f +4)B(1+14, fg)B(sa, fa)
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3.2 Bayesian decision rule

In addition we need to calculate the Bayesian cost function in order to conclude that a
result is statistically significant and the test can be stopped. First we’ll set a threshold
€. If the probability of conversion rate of A being better than that of B is less than ¢,
we would be indifferent between choosing either of the versions. The cost function is
used to estimate whether the expected losses made by choosing A (over B) are below
the threshold €. This cost function comes from the estimation of the Bayes probability,
and we are looking for a decision which will minimise this cost function [14]. It can be
expressed as follows:

b 2o (1= a)faysa (1 —y)fo
/0 /y e A TR (32.1)

The cost function can be simplified as:

B(8A+1afA) B($A+17fB)
B(SAv fA) B(SAa fB)

¢ is similar to the concept of probability threshold «, discussed in section 1. While
performing A/B tests, to conclude that the difference between the conversion rates is
significant, the p-value has to be less than «. Similarly, in the case of the Bayesian
decision rule, the test can be stopped when the expected loss is less than €. As with
threshold a, € = 0.01 by convention.

H(sa+1, fa,sB, fB) — H(sa, fa,s8+1,fB) <e (3.2.2)
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4 Multi-armed Bandits

The multi-armed bandit (MAB in short) is an alternative to the traditional A/B testing
approach, it uses adaptive learning to choose the best version among many options. The
name comes from imagining a gambler at a row of a slot machines (known as ”one-
armed” bandits), who wants to maximise his winnings. Every machine gives a random
reward drawn from a this machine’s probability distribution. There are two phases in the
game: exploration and exploitation, since the gambler has to choose the right machines
to play (exploration phase) and then concentrate on them (exploitation phase). He
has to decide which machines to play, how many times top play each machine, in which
order, and whether to continue with the current machine or try a new one.

e n - number of versions, not including A
e p; - proportion of traffic to be allocated to a version 7 at time ¢, i € {B/C/n}

® D4 - proportion of traffic to be allocated to A at time ¢

The A/B/C/n test is launched with the original version A and n versions. The
traffic is split equally among all the variations. Once the test is launched, every hour
we check if there are more than 100 visits and 20 conversions on the winning variation.
The allocation doesn’t change in the case of low traffic.

To define the new allocation at moment ¢, we first perform an A/B/C/n test described
in the first section. We obtain the standardised statistic Z; for every pair (versiony,
version;), i € {B/C/n} and find the winning version. Let ¢ be a parameter that dictates
the fraction of traffic to be allocated to a loosing version. We use an epsilon-decreasing
strategy, which means that the MAB prioritises exploration at the beginning of the test
and exploitation at the end. ; is dependent on the Z of the winning version:

er = minf{0.1 + e~ 13l winningl 11 (4.0.1)

| Zwinning| is likely to increase with time as more data is gathered, as it increases, the ;
decreases and less traffic is allocated to a loosing version.
For the loosing version, the proportion of traffic can be calculated the following way:

1—pay
Ploosing,t = €tT (402)

For A and any other version i (except for the loosing one), if version A is winning:

Dit = €tPit—1

(4.0.3)
pat =Dpat—1+ (1 —e)(1 —pay)

Otherwise: )
— PA,
Pit = EPig—1 + (1 — 5t)7t (4.0.4)

DAt = PAt—1
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At t =0, g = 1, which leads to highly explorative choices at the beginning of the
test. The more the reliability of the winning version increases, the more the value of ¢
decreases, resulting in highly exploitative behaviour at the end of the test.
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