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Outline

The goal of this document is to introduce and justify from a theoretical point of view,
the different statistical tools used at Kameleoon.

We start by presenting how Kameleoon assigns visitors to different variation within
an experiment which is the basis for what follow.

The second part is about Frequentist tests, which are run by default on our result
page. We first tackle the simple A/B test with only the original and one variation,
we explain the modelization, the hypothesis and how do we compute the reliability.
Then we extend those computations to A/B/C/n tests and explain how we compute our
confidence intervals. After that we explain how we chose to implement both CUPED
and our way to run sequential tests. To close this first part we present a few studies we
conducted regarding the impact of running visit-based tests and explain how we could
run a test on the ”all conversions” variable. Finally we give the formulas to compute
the minimal test duration for a given power.

In a third part we present our Bayesian A/B testing approach, how does it differ
from the frequentist one and how we compute the test statistics in this case.

Finally in a fourth and last part we outline the multi-armed bandit framework,
how it applies to A/B testing and give details regarding our own multi-armed bandit
implementation.
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1 Kameleoon’s assignation algorithm

To assign a visitor to an experiment variation, Kameleoon first build an identifier made
of the user visitor code which is a string identifying the visitor, the experiment ID and
a potential additional element in case of respooling. Then we use our own synchrone
implementation of the hash function SHA-256 [1] to compute a hash of this identifier.
The integer obtained through hashing is then mapped to a floating number between 0
and 1 in order to assign it to an experiment variation given the experiment assignation
setup. The SHA-256 function is deterministic, hence the same user (with the same
visitor code) will always be assigned to the same variation for a given experiment unless
we explicitly ask to recompute the assignation. This is also the case if you use one of
our SDK.

We implemented our own synchronous version of the SHA-256 function to be able to
run it inside any web browser or application and to be sure to compute the assignation
as efficiently as possible. SHA-256 is uniformly distributed which is a required property
in order to distribute visitors into variation as specified in the experiment setup.

For example, if we have an experiment which assigns 30% of its experimentee to the
original, 30% to the variation and 40% do not take part in the experiment at all. Then if
a user get an assignation value from our hash function of 0.33, first he will always get the
same value for that experiment unless an explicit respool is asked. Secondly, we assign
all users with identifier hashed between 0 and 0.3 (original deviation) to the original,
those between 0.3 and 0.6 (original deviation + variation deviation) to the variation and
those between 0.6 and 1 do not take part in the experiment. So this specific user which
maps to 0.33 will see the variation.
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2 Frequentist tests

2.1 Simple A/B test

A/B test is a simple controlled experiment, in which two versions of a single variable
are compared. Version A is the currently used version (the control), while version B is
modified in some respect (treatment). Every visitor, who is targeted by a test only sees
one version. For instance, version A might be the current checkout experience on a given
website and version B - a new checkout experience with a recommendation. Conversion
(success) in this case can be defined as a click on finalising the purchase. The goal of
the test is to discover which of the versions performs better.

A visitor can either convert a goal with probability p or not with probability q = 1−p,
so conversions and converted visitors can be represented by Bernoulli distribution with
parameters p and q. Let ni be the number of visitors allocated to a version i, ci be
the number of visitors who converted a goal and were allocated to version i. As a sum
of independent Bernoulli trials, cA and cB follow binomial distributions B(nA, pA) and
B(nB, pB). The conversion rate xi for a version i can be defined as:

xi =
ci
ni

(2.1.1)

xA is a current observed conversion rate for the control, xB - current observed con-
version rate for the alternative. The null hypothesis is that there’s no difference between
the conversion rates of two versions. The alternative hypothesis is that the conversion
rate of version B is different than that of version A.

• H0 : xB = xA

• HA : xB ̸= xA

The test statistic T is the difference between two conversion rates xA and xB. In
classical hypothesis testing, before the test we also select a probability threshold α, below
which the null hypothesis will be rejected. By convention, α is commonly set to 5%,
this means that five time out of a hundred there’s a risk of concluding that a difference
exists when there’s no actual difference between the conversion rates.

In the most of our applications, the sample size is large: common rule of thumb is to
check whether the sample size is bigger than 30. The observations are independent by
design. This is why according to the central limit theorem, the distribution of T under
H0 can be approximated by a normal distribution. The appropriate location test is called
a Z-test. To perform this test, we first calculate the population standard deviation σ.

σ =

√
xA(1− xA)

nA
+

xB(1− xB)

nB
(2.1.2)

Since the sample size is large, we can perform a plug-in test by using the popu-
lation standard deviation σ, instead of a sample standard deviation, to calculate the
standardised statistic Z [2].

Copyright © 2021 All rights reserved. Duplication for purposes of any kind is strictly forbidden. 4 / 22



Z =
xB − xA

σ
(2.1.3)

To decide whether to reject the null hypothesis in favour of the alternative, we
calculate the p-value. p-value is the probability of obtaining test results at least as
extreme as the results actually observed, under the assumption that the null hypothesis
is correct. A very small p-value means that such an extreme observed outcome would
be very unlikely under the null hypothesis. Since the distribution of the test statistic is
symmetric around 0, the two-sided p-value is calculated as

p = 2 ∗ (1− Φ(|Z|)) = 1− erf(
|Z|√
2
) (2.1.4)

where Φ is the standard normal cumulative distribution function and erf is the error
function, an entire function defined by

erf(z) =
2√
π

∫ z

0
e−t2dt (2.1.5)

The null hypothesis is rejected if the p-value is less than the chosen threshold α.
However, us not being the final decision maker, we prefer to show reliability instead of
the p-value and leave the client to decide whether the result of the test is sufficient to
conclude that there’s a significant difference between the versions.

reliability = 1− p (2.1.6)

2.2 A/B/C/n test

The procedure described in the previous section can be extended to test multiple versions
at the same time. For example, we could test four versions of a page and do an A/B/C/D
test, where A is the original version of a page and B, C, D are versions of the same page
each modified in its own respect. The purpose of such a test would be to discover which
of the modifications (B, C, D) will result in better performance compared to the original
A.

To perform this test, we will repeat the procedure described in the previous section
for the following three pairs of versions: A/B, A/C and A/D. Each such pair is treated
as a separate test: for each such pair we formulate a set of hypotheses H0 and HA.

For i ∈ {B,C,D}:

• H0 : xi = xA

• HA : xi ̸= xA

We will calculate the population standard deviation σi, the standardised statistic Zi,
the corresponding p-value and the reliability.
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σi =

√
xA(1− xA)

nA
+

xi(1− xi)

ni
(2.2.1)

Zi =
xi − xA

σ
(2.2.2)

pi = 2 ∗ (1− Φ(|Zi|)) = 1− erf(
|Zi|√
2
) (2.2.3)

reliabilityi = 1− pi (2.2.4)

Reliabilityi is shown next a conversion rate xi of every version i, i ∈ {B,C,D}. This
procedure can be extended to any number of versions, not only four.

2.3 Multiple testing correction

When the number of variation increases, we increase the probability of obtaining a type
I error (false positive). Indeed, the more inference are made, the more likely it is that
one is erroneous. Several technics were developed to deal with this issue, we chose to
implement the Holm–Šidák method as it is more powerful than the Holm-Bonferroni
method. To apply this correction we correct the p-values using the following formula.
This formula is applied recursively to the multiples p-values sorted in ascending order.

p̃(i) = max{p̃(i−1), 1− (1− p(i))
m−i+1}, where p̃(1) = 1− (1− p(1))

m (2.3.1)

Then the testing procedure can resume, and a hypothesis is rejected at level α if and
only if its adjusted p-value is less than α. This allow us to control the family wise error
rate at the given level α.

2.4 Confidence interval

The test can answer the question whether version B performs better than A, but it
doesn’t quantify how much better it performs or the level of uncertainty associated. To
quantify the performance of version B compared to version A, we introduce improve-
ment rate [3]:

IR =
xB
xA

− 1 (2.4.1)

To present the uncertainty associated with this parameter, confidence intervals are
shown. Confidence interval gives a range of values for improvement rate and has an
associated confidence level that gives the probability with which the estimated interval
will contain the true value of the parameter. The confidence level represents the the-
oretical long-run proportion of confidence intervals that contain the true value of the
improvement rate. By convention, we use a confidence level of 95%, which means that
95% of confidence intervals computed at this level contain the parameter.
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The confidence interval is given by

[IR− z1−α
2

√
1

cA
+

1

c0
− 1

nA
− 1

n0
, IR+ z1−α

2

√
1

cA
+

1

c0
− 1

nA
− 1

n0
] (2.4.2)

where z1−α/2 is the (1 − α/2)-th quantile of a standard normal distribution. For the
chosen confidence level C = 100(1− α)% = 95%, z1−α

2
≈ 1.96.

Confidence interval is calculated for every pair i of (versionA, versioni), i ∈ {B,C...}
to show the uncertainty around improvement rate of every modified version with respect
to the original version.

2.5 CUPED

Controlled-experiment Using Pre-Experiment Data (CUPED) was first introduced in a
paper from Microsoft [4]. It is a variance reduction technique based on the control
variates method [5]. The idea is to leverage information about a known variable to
help reduce the error done when estimating an unknown one. We will quickly cover the
theory before detailing how we apply this technique at Kameleoon.

Let’s say our variable of interest is Y and we want to estimate E(Y ) = µ. The idea is
to introduce a new random variable X with known expectation E(X) in order to build

Ŷcontrol = Y + θ ∗ (X − E(X)) (2.5.1)

We can show that Ŷcontrol is an unbiased estimator of µ independently of the choice
of θ because

E(Ŷcontrol) = E(Y ) + θ ∗ (E(X)− E(E(X)) = E(Y ) = µ (2.5.2)

And that its variance is

V ar(Ŷcontrol) = V ar(Y +θ∗(X−E(X))) = V ar(Y )+θ2V ar(X)+2θ∗Cov(Y,X) (2.5.3)

One can then show that this variance is minimal when θ = −Cov(Y,X)
V ar(X) and with this

θ we get

V ar(Ŷcontrol) = V ar(Y )− Cov(Y,X)2

V ar(X)
= (1− ρ2)V ar(X) (2.5.4)

Where ρ = Corr(Y,X) is the correlation between Y and X. Hence the greater this
coefficient is in absolute value, the more the final variance will be reduced.

So the difficulty lies in choosing the right control variate for which we know its
expectation, and which is highly correlated (positively or negatively) to the outcome.
And in a test framework, we have to know the expectation of the variable of interest
for the visitors within both the control and the variation group. This is where pre-
experiment data come in handy, because before the experiment start they are actually
equal (i.e. there is no difference between the groups prior to the start of the experiment).
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The natural choice for a variable correlated with the outcome variable, which will
be computed on pre-experiment data is actually the outcome variable itself. Empirical
results[4] have shown this to be the best choice for control variates. In this great paper
from Microsoft, researchers also warn about the following points:

• In general, the optimal pre-experiment window is 1–2 weeks. A shorter window
doesn’t capture enough variance and a longer window captures noise.

• For longer experiments, a longer pre-experiment window is needed to ensure that
the same users are observed both during and prior to the experiment.

• The covariate X has to be evenly distributed between treatment and control. If it
is impacted by the treatment, CUPED becomes invalid.

• The CUPED method only removes variance that can be accounted for linearly.

Having all that in mind we chose as covariate the same objective on a time window
of two weeks prior to start of the experiment. After using pre-experiment data to build
our new CUPED corrected metric, we run our statistical test on this new metric.

2.6 Sequential Testing

Sequential testing is a statistical approach used to monitor the progress of A/B tests
over time and make data-driven decisions on when to stop a test while keeping the risk
of a type I error under control. Sequential testing is the main answer to ”peeking”[6]
which is the most common source of unwanted risk inflation in AB testing.

Indeed the classical frequentist test is built on the assumption that the test is run
once we have collected all our samples and not before. But if we take a sneak peek at
results during the data collection phase and we stop the test if we find a reliable result,
then the resulting false positive rate is way higher than the one we expected.

Kameleoon has chosen to use a Gaussian mixture asymptotic confidence sequence
for its sequential tests, for a great review of the different framework of sequential tests
see this blog[7] made by Spotify. This sequence was proposed in Waudby-Smith et
al. (2023) [8]. It is based on always valid inference which was proposed by Howard
et al. (2021) [9], as stated in their paper, it provides a confidence sequence which has
the following properties all very necessary to our field of work:

• The coverage guarantee holds for all sample sizes and even without distributional
assumption

• No previous knowledge of the stopping rule is required

• No bound on sample size

• The width of the confidence sequence converges towards zero
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Those properties are perfect for our use case. Indeed the customer running its AB
test is able to choose to keep his experiment running to gather more data or to stop it
at any point in time according to any rule without inflating his risk. Of course there
is always a price to pay, the resulting test will have less power than the corresponding
fixed sample test.

The sequential confidence interval for the improvement rate is given by

[IR± σ̂n ∗

√
ϕ+ n

n
∗ log( ϕ+ n

ϕ ∗ (α/2)2
)] (2.6.1)

with n being the total number of visitors targeted by the test, for example for an AB
test we have n = nA + nB, σ̂n the mean standard error after collecting n samples and α
a given level of significance. We use 5% by convention.

The trick of this method is that this sequence is obtained by injecting a mixing
distribution inside the Sequential Probability Ratio Test (SPRT) which was introduced
by Wald, A. (1945) [10]. Specifically here we use a gaussian mixture but we have a lot
of liberty in the choice of the parameters of this distribution, as shown by the parameter
ϕ in the equation above. Howard et al. (2021) include in their article a very insightful
and extensive discussion on the choice of this parameter (section 3.5). As they state ”All
uniform boundaries involve a tradeoff of tightness at different intrinsic times: making a
bound tighter for some range of times requires making it looser at other times”. They
show that it is possible to optimize the interval boundaries so they will be tightest for
a given number of observation. They also show that this parameter doesn’t need to be
very precise as long as it is conservative. Indeed the price to pay is way steeper in case
of overestimation than under estimation.

We chose to optimize for the time noptimal = 20000 as it is a number of visitors which
makes sense for our wide range of customers. In order to compute the corresponding
value of ϕ we use the following equality (corresponding to equation (21) in [9]):

noptimal

ϕ
= −W−1(−

α2

e
)− 1 (2.6.2)

W−1(x) being the lower branch of the Lambert W function. We can then use the
following inequality to approximate the Lambert function:

log(x)− log(log(x)) < W (x) < log(x)− log(log(x))− log(1− log(log(x))

log(x)
) (2.6.3)

This allows us to express ϕ according to noptimal the number of observations for which
we optimize as follow:

noptimal

ϕ
∼ log(log(

e

α2
))− 2 ∗ log(α) (2.6.4)

This yields a value of ϕ = 2520.
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2.7 Visit-based tests

The A/B tests discussed so far were performed on a visitor level. For those tests, the
two assumptions were satisfied by design:

• the observations are independent

• the samples are big enough (ni ≫ 30)

Thus, the distribution of the test statistic T = xA − xB under the null hypothesis is a
normal distribution according to the central limit theorem.

Visit-based tests violate the assumption of observations independence, since the same
visitor can return many times. To ensure that we can still use the same design for visit-
based tests, we compared the empirical CDF to the CDF of the normal distribution
and performed a Kolmogorov-Smirnov test. This non-parametric test (of equality of two
continuous one-dimensional probability distributions) is used to compare a sample with
a reference probability distribution. Our simulations showed that the empirical CDF
can be approximated by a normal distribution, thus z-test is appropriate to use.

2.8 Ratio metric

Kameleoon also allows you to build and test metrics which are defined as a ratio of two
other metrics. To formalize it, we define a ratio metric ratio like this: ratio = X

Y . We
now want to build a test to be able to tell if the average of this ratio is improved in a
variation compared to another one. In order to do so we have to be able to estimate the
mean and the variance of this ratio. Working with a ratio of random variable is tricky and
we need to assume some of the properties of the denominator Y to be able to approximate
the ratio distribution.[11] The main assumption to fulfill is that the distribution of Y
should be far enough from 0. Hence its mean should be strictly positive and its standard
deviation should be small enough relatively to its mean.[12]

If the variance of Y , σ2
Y is large then the following happens:

• The variance of the ratio increases significantly

• The normal approximation of the ratio may not hold

• The ratio distribution could be skewed or heavy-tailed instead of normal

In our case, we are working with sample means, hence as the sample grow we usually
fall under the necessary assumption to be able to apply the delta method, namely that
the asymptotic distribution of the sample mean of the ratio is gaussian. Then we can
apply the delta method to our ratio as we have ratio = X

Y = g(X,Y ) with g : x, y → x
y

being differentiable in a neighborhood of (x̄, ȳ) since the average of the sample mean of
Y is strictly positive.

Computing the first-order Taylor expansion around (µX , µY ):
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g(X̄, Ȳ ) ≈ g(µX , µY ) +

(
∂g

∂x

∣∣∣
(µX ,µY )

)
(X̄ − µX) +

(
∂g

∂y

∣∣∣
(µX ,µY )

)
(Ȳ − µY ).

Computing derivatives:

∂g

∂x
=

1

y
,

∂g

∂y
= − x

y2
.

Evaluating at (µX , µY ):

∂g

∂x

∣∣∣
(µX ,µY )

=
1

µY
,

∂g

∂y

∣∣∣
(µX ,µY )

= −µX

µ2
Y

.

Thus, the linear approximation is:

¯ratio ≈ µX

µY
+

1

µY
(X̄ − µX)− µX

µ2
Y

(Ȳ − µY ).

Thus, for large n:

¯ratio ≈ N
(
µX

µY
,
σ2
X

nµ2
Y

+
µ2
Xσ2

Y

nµ4
Y

− 2
µX

µ3
Y

ρσXσY
n

)
. (2.8.1)

With this we can then follow the same path to test the improvement rate on the
ratio of variation A against variation B.

2.9 Minimal test duration to obtain significant result

• α (type I error): probability of rejecting a true null hypothesis

• β (type II error): probability of not rejecting a false null hypothesis

• 1-α: desired reliability

• x0: current conversion rate

• IR: desired improvement rate

• v: number of versions in the test minus one

• ki: ratio between traffic allocated to A and traffic allocated to the i-th version

• ndaily: average number of daily visitors

For each pair i = 1...v of (versionA, versioni), versioni∈{versionB, versionC, ...} the
following procedure is repeated: Since the conversion rate for a version is unknown
before the test, it can be estimated using the desired improvement rate:

xi = xA(1 + IR) (2.9.1)
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The sample size for version A (nA) and for the version i (ni) then can be approximated
by [13]:

nA = kini (2.9.2)

ni =
(zα/2 + zβ)

2

(xi − xA)2
[xA(1− xA)/k + xi(1− xi)] (2.9.3)

where zα/2 is the (1 − α/2)-th lower quantile of a standard normal distribution, zβ
is the (1− β) lower quantile of a standard normal distribution.

Required test duration in days for the pair (versionA, versioni) is

di = ⌈n0 + ni

ndaily
⌉ (2.9.4)

where ⌈⌉ denotes the ceiling operator. This operator maps x to the least integer greater
than or equal to x, ceil(x)=⌈x⌉.

The maximum of all di-s is the duration (in days) of the test.

d = max{d1, ..., dv} (2.9.5)

During the test, the conversion rates xi for every version i are known, so the estima-
tion (1.6.1) should be omitted and observed xi-s should be plugged directly into equation
(1.6.3). We repeat the procedure described above to obtain d. The number of days left
to achieve a significant result is

dleft = d− dpassed (2.9.6)

2.10 Continuous metrics

In the general case where the variable on which we are testing is not a Bernoulli variable
but a continuous one, we do not have a closed-form expression for the resulting variance.
Hence we have to estimate it from the data we observed using the following unbiased
estimator:

σ2 =

∑n
i (xi − x̄)2

n− 1
(2.10.1)

This allows us to estimate the variance inside each variation A and B. For continuous
metrics, we directly compute a test statistic for the improvement rate introduced in
equation 2.4.1. We have to use the delta method in order to estimate the variance of the
improvement rate since it is a function of two variables. This variance σ2 is expressed
as:

σ2 =
1

nA + nB
∗
x2B
x2A

∗ (σA
x2A

+
σB
x2B

) (2.10.2)

We can then inject the variance of the improvement rate to compute a confidence
interval and the test p-value as described in the previous sections.
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3 Bayesian A/B Testing

3.1 Bayes probability

In the A/B testing framework, the goal of the Bayesian formulation is to calculate the
probability that the version A is different from the version B. By convention, if the
probability exceeds 95%, we can conclude that the result is statistically significant. This
is a necessary but not sufficient condition, the second condition will be described in the
next subsection.

• sA: number of visitors who converted a goal in the version A

• sB: number of visitors who converted a goal in the version B

• fA: number of visitors who didn’t convert in the version A

• fB: number of visitors who didn’t convert in the version B

The conversion rate is defined as:

xA =
sA

sA + fA

xB =
sB

sB + fB

(3.1.1)

The biggest distinction between the frequentist approach and the Bayesian one is
the concept of prior probability distribution. Prior is the probability distribution that
would express one’s beliefs about the parameter (the conversion rate in our case) before
new evidence is taken into account. We’ll model the conversion rate distribution using
Beta family of distributions as they provide a family of conjugate prior probability
distributions for binomial (hence Bernoulli) distributions.

xA ∼ B(sA + 1, fA + 1)

xB ∼ B(sA + 1, fB + 1)

Using the probability density function of the beta distribution and the Bayes’ the-
orem, we can get the total probability that xB is greater than xA by integrating
the joint distribution over all values for which xB > xA [14]. Let’s denote this posterior
probability as H(sA, fA, sB, fB).

H(sA, fA, sB, fB) = Pr(xB > xA) =

∫ 1

0

∫ 1

xA

xsAA (1− xA)
fA

B(sA, fA)

xsBB (1− xB)
fB

B(sB, fB)
dxBdxA

(3.1.2)
Or equivalently:

Pr(xB > xA) =

sA−1∑
i=0

B(sA + i, fA + fB)

(fB + i)B(1 + i, fB)B(sA, fA)
(3.1.3)
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3.2 Bayesian decision rule

In addition we need to calculate the Bayesian cost function in order to conclude that a
result is statistically significant and the test can be stopped. First we’ll set a threshold
ε. If the probability of conversion rate of A being better than that of B is less than ε,
we would be indifferent between choosing either of the versions. The cost function is
used to estimate whether the expected losses made by choosing A (over B) are below
the threshold ε. This cost function comes from the estimation of the Bayes probability,
and we are looking for a decision which will minimise this cost function [15]. It can be
expressed as follows:∫ 1

0

∫ 1

y
(y − x)

xsA(1− x)fAysA(1− y)fB

B(sA, fA)B(sA, fB)
dxdy ≤ ε (3.2.1)

The cost function can be simplified as:

B(sA + 1, fA)

B(sA, fA)
H(sA + 1, fA, sB, fB)−

B(sA + 1, fB)

B(sA, fB)
H(sA, fA, sB + 1, fB) ≤ ε (3.2.2)

ε is similar to the concept of probability threshold α, discussed in section 1. While
performing A/B tests, to conclude that the difference between the conversion rates is
significant, the p-value has to be less than α. Similarly, in the case of the Bayesian
decision rule, the test can be stopped when the expected loss is less than ε. As with
threshold α, ε = 0.01 by convention.

3.3 Continuous metrics

In order to perform a bayesian statistical hypothesis test in the case of a continuous
metric, we still have to start from a prior probability distribution that we will update with
the data we observe. When the metric is continuous, instead of building a distribution
on the conversion rate of each variant, we focus directly on the improvement rate and
we start with a prior probability distribution on the improvement rate that we update
to reach the posterior probability distribution.

We chose to use a normal prior for the improvement rate, centered around zero
and with a standard deviation of 0.1. This means that in average we expect that the
variation will not show any improvement over the reference on the mean of the observed
metric, and that ninety-nine percents of the improvements observed range between plus
or minus thirty percents. This value was derived after studying more than a year of
empirical data. One of the advantage of using a normal prior is that it is a conjugate
prior [16], hence we can derive a close-form expression for the posterior which will also
be normal.

Indeed, for a prior distribution N(µ0, σ
2
0), after collecting data with mean µ and

variance σ2, the posterior parameters are the following:

Copyright © 2021 All rights reserved. Duplication for purposes of any kind is strictly forbidden. 14 / 22



µposterior =
(µ0

σ2
0
+ µ

σ2 )

1
σ2
0
+ 1

σ2

, σ2
posterior = (

1

σ2
0

+
1

σ2
)−1 (3.3.1)

This actually simplifies a lot after we plug in µ0 = 0 and σ0 = 0.1. Once we have a
closed-from expression for the posterior distribution, we can use it to compute a credible
interval at a given level α as well as the probability for the improvement rate to be greater
than 0. The improvement rate mean was introduced in 2.4.1, in order to compute the
variance of the improvement rate we have to leverage the delta method as described in
2.10.2.
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4 Outlier Handling

We chose to use Winsorization in order to handle outlier values at Kameleoon. Win-
sorization is a statistical technique used to limit extreme values in data to reduce the
impact of outliers, by using percentiles of your data. Outliers are data points that sig-
nificantly differ from other observations and can skew the results of your AB tests. By
Winsorizing your data, you can ensure that your results are more robust and reliable.

In AB testing, we compare two or more variations to determine which performs bet-
ter. Outliers can distort the true performance of these variations, leading to misleading
conclusions, mainly due to “whale users”. By applying Winsorization, we mitigate the
effect of these extreme values, providing you with more accurate and actionable insights.
Winsorization is particularly useful when:

• Your data contains extreme values that are not errors but are still significantly
different from other observations.

• You are looking for a simple and effective method to handle outliers without re-
sorting to more complex techniques.

• You need to maintain a balance between data integrity and managing outliers
effectively.

The Winsorization algorithm is fairly simple, it takes as input two quantiles: qlower

and qupper. Then it will compute the values corresponding to this quantiles. At
Kameleoon we compute those values on the two past weeks of collected data and up-
date them daily to avoid data drifts. Then when checking your experiment results, all
the values below qlower are replaced by qlower and all the values greater than qupper are
replaced by qupper.
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5 Bandits Algorithms

5.1 Multi-armed Bandits

The multi-armed bandit (MAB in short) is an alternative to the traditional A/B testing
approach, it uses adaptive learning to choose the best version among many options. The
name comes from imagining a gambler at a row of a slot machines (known as ”one-
armed” bandits), who wants to maximise his winnings. Every machine gives a random
reward drawn from a this machine’s probability distribution. There are two phases in the
game: exploration and exploitation, since the gambler has to choose the right machines
to play (exploration phase) and then concentrate on them (exploitation phase). He
has to decide which machines to play, how many times top play each machine, in which
order, and whether to continue with the current machine or try a new one.

• n - number of versions, not including A

• pi,t - proportion of traffic to be allocated to a version i at time t, i ∈ {B/C/n}

• pA,t - proportion of traffic to be allocated to A at time t

The A/B/C/n test is launched with the original version A and n versions. The
traffic is split equally among all the variations. Once the test is launched, every hour
we check if there are more than 100 visits and 20 conversions on the winning variation.
The allocation doesn’t change in the case of low traffic.

To define the new allocation at moment t, we first perform an A/B/C/n test described
in the first section. We obtain the standardised statistic Zi for every pair (versionA,
versioni), i ∈ {B/C/n} and find the winning version. Let ε be a parameter that dictates
the fraction of traffic to be allocated to a loosing version. We use an epsilon-decreasing
strategy, which means that the MAB prioritises exploration at the beginning of the test
and exploitation at the end. εt is dependent on the Z of the winning version:

εt = min{0.1 + e−1.3|Zwinning |, 1} (5.1.1)

|Zwinning| is likely to increase with time as more data is gathered, as it increases, the εt
decreases and less traffic is allocated to a loosing version.

For the loosing version, the proportion of traffic can be calculated the following way:

ploosing,t = εt
1− pA,t

n
(5.1.2)

For A and any other version i (except for the loosing one), if version A is winning:

pi,t = εtpi,t−1

pA,t = pA,t−1 + (1− εt)(1− pA,t)
(5.1.3)

Otherwise:

pi,t = εtpi,t−1 + (1− εt)
1− pA,t

n
pA,t = pA,t−1

(5.1.4)
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At t = 0, ε0 = 1, which leads to highly explorative choices at the beginning of the
test. The more the reliability of the winning version increases, the more the value of ε
decreases, resulting in highly exploitative behaviour at the end of the test.

5.2 Contextual Bandits

The Contextual Bandit (C-MAB usually) is a personalized version of the MAB where
the assignation of a visitor is no longer assigned randomly to a variation based on
the deviations valid at time T. With the contextual bandit a visitor is assigned to
the variation which maximises his probability to convert the objective based on his
characteristics.

Indeed, at each time step t, a user arrives with a context vector xt ∈ Rd. The
algorithm must choose an action at ∈ {1, . . . ,K}, corresponding to one of K possible
variations. After making this choice, the algorithm observes a reward rt(at), and uses it
to update its decision model.

At Kameleoon we implemented an approach based on neural bandits and on the
following algorithm which was introduced in the paper ”A Contextual-Bandit Approach
to Personalized News Article Recommendation”, where they use disjoint Linear Models.
As they put it, This model is called disjoint since the parameters are not shared among
different arms. [19].

Algorithm Steps

1. Observe context: xt

2. Estimate expected rewards:

r̂t(a) = fa(xt)

where fa is a model predicting the expected reward for action a given context xt.

3. Choose action using uncertainty-aware exploration:

at = argmax
a

(fa(xt) + α · UCBa(xt))

where UCBa(xt) represents a model-dependent uncertainty measure, and α ≥ 0
controls the exploration-exploitation balance.

4. Observe reward: rt(at)

5. Update model: Incorporate (xt, at, rt(at)) into the learning dataset.

The goal is to minimize cumulative regret over time:

RT =
T∑
t=1

(rt(a
∗(xt))− rt(at))
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where a∗(xt) is the optimal action for context xt.
Two main things to note here, we have decided to use neural networks as models pre-
dicting the expected reward for action a given context xt. And regarding the parameter
α which serves to define the balance between exploration and exploitation. We have
implemented the contextual bandit as a two step process, with a learning / training
phase and an exploitation phase. Our neural networks first train then we uses them to
assign variations so we have set α = 0. This is something we monitor and it may evolve
in the future.

The main use cases for contextual bandits are the following

• Product recommendations based on user attributes

• Real-time UX adaptations across traffic segments

• Dynamic pricing or offer strategies

Its advantages is the personalization in real-time and the ability to learn from user
interactions, at the cost of a possible sub-optimal performance during the learning phase
of the models.

Context Used

Inside our neural network we use a mix a static features and dynamic ones in order to
estimate the expected reward for each variation. Indeed our model is based on three
main categories of features, the ones based on previous sessions done by the visitor, the
ones based on static information collected when the visitor lands on the site and finally
the ones built from the user browsing behavior up to the moment when we assign him
a variation.
Here is a non exhaustive catalogue of our features:

1. Previous Sessions Features

• Number of sessions

• Average time between sessions

• Number of visited pages

• Number of clicks

• ...

2. Static Features

• Browser

• OS

• Landing page

• Referrer
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• Time since last session

• ...

3. Dynamic Features

• Number of pages visited

• Number of clicks

• Time spent on the website

• ...

Note that you can also enrich our models with your own data by setting up custom
data and marking them learnable. Then our machine learning models will use them to
improve their estimations.
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